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Tracer particles on the surface of a turbulent flow have a very intermittent distribution. This preferential
concentration effect is studied in a two-dimensional synthetic compressible flow, both in the inertial �self-
similar� and in the dissipative �smooth� range of scales, as a function of the compressibility C. The second
moment of the concentration coarse grained over a scale r, �nr

2�, behaves as a power law in both the inertial and
the dissipative ranges of scale, with two different exponents. The shapes of the probability distribution func-
tions of the coarse-grained density nr vary as a function of scale r and of compressibility C through the
combination C /r� ���0.5�, corresponding to the compressibility, coarse grained over a domain of scale r,
averaged over Lagrangian trajectories.
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I. INTRODUCTION

How turbulence advects particles, a problem with many
practical implications, depends in a subtle way on the flow
properties. The development of novel experimental tech-
niques, permitting the motion of individual particles to be
followed precisely, and of new theoretical concepts has led
recently to promising perspectives in this field.

We consider here the dispersion of Lagrangian particles,
advected by a two-dimensional surface flow. Even in an in-
compressible fluid, the motion restricted to the surface is
compressible. As a result, particles are observed to concen-
trate very inhomogeneously. This phenomenon exhibits a
number of similarities with the “preferential concentration”
of inertial particles in a turbulent flow, where compressibility
originates from the fact that particles do not exactly follow
the flow.

The phenomenon has been studied experimentally in a
laboratory flow at moderate Reynolds number �R��100�, as
well as in direct numerical simulations �DNSs� of a turbulent
flow with a free surface �1,2�. In these flows, it is convenient
to define the compressibility C at the surface, defined geo-
metrically by the plane z=0, by

C =
��� · u�2�

���xux�2 + ��xuy�2 + ��yux�2 + ��yuy�2�
. �1�

This quantity is found to be close to 1/2, both in experiments
and in numerics.

The aim of this work is to investigate in a model flow
problem some of the fundamental issues regarding the inho-
mogeneous distribution of particles. To this end, we consider
a simplified compressible synthetic flow, obtained by super-
posing a finite number of Fourier modes, spanning the ‘iner-
tial range’ of scales: 1 /L�k�1 /�, with a standard k−5/3

velocity spectrum, and with a characteristic time �k�k2/3, as
expected by Kolmogorov theory. The ratio between the larg-
est �integral� scale L and the smallest �Kolmogorov� scale �
is a free parameter of the flow, related to the Reynolds num-
ber in real flows by Re� �L /��4/3. The other free parameter
in the flow is the compressibility C defined by Eq. �1�. In our
approach these two parameters can be varied at will.

The main focus of this paper is on the properties of the
distributions of particles in a synthetic compressible flow.
Recent work on preferential concentration of inertial par-
ticles has led to the conclusion that the coarse-grained con-
centration field at scale r, nr, has very different properties,
depending on the range of scale. At very small scales �dissi-
pative range, r	��, the flow is smooth and the particles
accumulate on a multifractal set �3–6�. The second-order mo-
ment of the distribution can be estimated in various limits, in
particular in the small-Stokes-number limit �7–9�, of particu-
lar relevance to a number of problems of atmospheric �cloud�
physics. The concentration field of inertial particles in the
inertial range displays interesting properties �10�. No particu-
lar scaling range is found for the second-order moment �nr

2�.
Interestingly, however, the probability distribution function
of nr is controlled only by the coarse-grained contraction
rate.

In a compressible two-dimensional flow, we find that �nr
2�

has a power law as a function of scale r, �nr
2�� �L /r�
, both

in the inertial range, with an exponent 
i, and at small scales
�r	��, with an exponent 
d. The exponent in the inertial
range is smaller than that in the dissipative range, 
d�
i.
The probability distribution of the coarse-grained concentra-
tion has algebraic tails at low values of the concentration.
These tails reflect the probability that large regions contain
very few particles, in qualitative agreement with the obser-
vations. Finally, we find that the probability distributions of
nr superpose, provided the ratio C�L /r�� is kept constant,
where � is an exponent whose value is close to 0.5.

In Sec. II, we discuss the synthetic flow used in this work.
Elementary properties of the resulting particle distribution
are discussed in Sec. III. The scaling aspects of the distribu-
tion are presented in Sec. IV. Section V is devoted to the
probability distribution functions of the coarse-grained con-
centration. Finally, we discuss our results and present our
conclusions in Sec. VI.

II. SYNTHETIC FLOW

Instead of using a genuine solution of the Navier-Stokes
equations, we consider a synthetic velocity field in two di-

PHYSICAL REVIEW E 77, 066304 �2008�

1539-3755/2008/77�6�/066304�6� ©2008 The American Physical Society066304-1

http://dx.doi.org/10.1103/PhysRevE.77.066304


mensions. The method is known as kinematic simulation
�KS�, and was developed initially by Fung et al. �11�, and
applied since to many dispersion problems �12–14�.

Effectively, the velocity field v�x , t� is constructed as the
sum of an incompressible and a compressible component,

v = vI + vC, �2�

where vI �vC� are the incompressible �compressible� compo-
nents of the velocity field. These fields are obtained as the
superposition of a finite number of Fourier modes:

vI�x,t� = 	
n=1

Nk

In sin�kn · x + �nt + n� ,

vC�x,t� = 	
n=1

Nk

Cn sin�kn · x + �nt + �n� , �3�

where Nk is the number of modes in the simulation, and the
vectors kn, In, and Cn are given by

kn = knk̂n, Cn = AnC1/2k̂n, In = An�1 − C�1/2k̂n� �4�

with

k̂n = cos��n�x̂ + sin��n�ŷ ,

k̂n� = − sin��n�x̂ + cos��n�ŷ . �5�

In Eqs. �3� and �5� the phases n,�n and the angle �n are
randomly distributed in the interval �0,2�� and uncorrelated
with each other. The wave numbers kn have a norm chosen
of the form kn=k1bn−1, the parameter b being chosen to be
b= �L /��1/�Nk−1�. The large �integral� scale L and the small
�Kolmogorov� scale � of the flow verify: L=2� /k1 and �
=2� /kNk

. The positive amplitudes An of the modes are cho-
sen according to An

2=E�kn��kn, where E�kn� is the energy
spectrum of the flow taken as the standard Kolmogorov form
E�kn��kn

−5/3. �kn= �kn+1−kn−1� /2 for 2�nk�Nk−1, �k1
= �k2−k1� /2, and �kNk

= �kNk
−kNk−1� /2. Last, the frequencies

�n are taken to be �n=�
kn
3E�kn�, where � is a dimension-

less parameter, a priori of order 1 �we take here �=0.5�.
To determine the distribution of particles, we simply inte-

grate the equations of evolution given by the set of differen-
tial equations

d

dt
X�x0,t� = v�x = X,t� , �6�

where v�x , t� is the synthetic velocity field, defined by Eq.
�3�, with the initial condition X�x0 ,0�=x0. The particles are
initially distributed uniformly throughout a square periodic
box �2��2��.

The KS velocity field is only a model of the flow, whose
properties reproduce only approximately those of the real
flow. In particular, it completely misses the intermittency
properties found in DNSs �15�. Recent work on the Kraich-
nan model has shown that models with nonintermittent flow
properties can capture the most important aspects of the par-
ticle distribution �16,17�. The fact that the KS flow does not

properly describe the sweeping of the small scales by the
large scales of the flow is potentially a more serious limita-
tion �18�. It is nonetheless of interest to vary the main free
parameter of the flow, the compressibility, and investigate the
particle distribution as a function of C.

III. ELEMENTARY PROPERTIES OF THE DISTRIBUTION

In this section, we discuss the elementary properties of the
particle distribution as a function of the parameters of the
flow, in particular of the compressibility C. A typical example
of the particle distribution in the flow is shown in Fig. 1. The
distribution corresponding to a compressibility C=0 is uni-
form. As C increases, the particles get concentrated on a
sparser subset of the physical space, as a visual comparison
between the two panels of Fig. 1 corresponding to C=0.05
and 0.1 reveals.

The existence of a nontrivial distribution of particles in a
compressible flow simply results from the properties of the
dynamical system given by Eq. �6� �19–21�. In fact, when the
dynamical system is chaotic, that is, provided it has a posi-
tive Lyapunov exponent, the particles concentrate along a
nontrivial �multifractal� set. Thus, whether the particles have
an intermittent distribution depends on the existence of a

y

x

C=0.05

y

x

C=0.1

(b)

(a)

FIG. 1. Visualization of the particle distribution in a box of size
�2��2��, in the stationary state at t=4�L, where �L is the integral
time scale. The particles are distributed along a nontrivial spatial
subset, with a very sparse �intermittent� structure, with many empty
regions. As the compressibility increases, the structures become in-
creasingly spotty, as revealed by the comparison between the values
of C=0.05 �top� and 0.1 �bottom�.
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positive Lyapunov exponent for the dynamical system given
by Eq. �6�. The largest Lyapunov exponent for the flow con-
sidered here has been computed numerically using standard
methods, and the result is shown in Fig. 2. The largest
Lyapunov exponent, denoted �, decreases linearly when C
increases, and becomes negative for C�0.19.

The range of values of C over which the flow is chaotic is
significantly smaller than the corresponding range in other
models of turbulent flows, such as the Kraichnan model, or
its elaborations with finite correlation times �22�. We inter-
pret the strong concentration in our synthetic system as a
result of the simplified structure of the flow at a given scale
�only one wave number kn instead of a full shell�; see Eq.
�3�. This effect, however, is not a serious concern for our
investigation of issues related to preferential concentrations.

IV. PREFERENTIAL CONCENTRATION AND SCALING
EXPONENTS

Figure 1 reveals that particles concentrate over a set with
a multiscale structure. Various diagnostics have been pro-
posed to characterize the scale distribution of the set where
particles accumulate. We focus here on the moments of the
Eulerian particle density �computed at fixed spatial location�
coarse grained over a square of size r.

Effectively, the computational domain, of size �2��2, is
decomposed into 22p squares of size r=2� /2p. The number
of particles in a given square, divided by the area of a square,
4�2 /22p, defines the density of particles in this square. The
overall concentration of particles being immaterial, we de-
fine nr as the concentration in a small square, divided by the
mean concentration, so that the mean value of nr is equal to
�nr�=1. The larger the value of �nr

2�−1, the larger the fluc-
tuations of the particle concentrations. The dependence of
�nr

2�−1 on the scale r thus characterizes the importance of
the lack of homogeneity of the particle density at scale r, and
provides a good measure of the heterogeneity of the concen-
tration. It is easy to show that, for a homogeneous distribu-
tion of particles, �nr

2� is independent of r. When particles
accumulate along a line, �nr

2��r−1, and when particles accu-
mulate on a single point, �nr

2��r−2.

The second moment of the coarse-grained particle con-
centration is shown in Fig. 3 for a run with C=0.05 and
L /�=1024. Figure 3 shows that ��nr

2−1�� behaves as a
power law in the dissipative range �for r	��, characterized
by the exponent 
d: �nr

2�� �� /r�
d. Similarly, in the inertial
range �	r	L �L /�=256 in the present calculation�, the
deviation of �nr

2� from 1, the value at r=2�, behaves as a
power law: ��nr

2−1��� �L /r�
i. The second moment of the
coarse-grained particle distribution over a scale r is thus
characterized by two different exponents, one in the inertial,

i, and one in the dissipative range, 
d. It is found that 
d
�
i, which implies that the heterogeneities grow faster in
the dissipative than in the inertial range, an effect already
known in the context of preferential concentration of heavy
particles in turbulent flows.

Comparison of several runs with the same value of the
compressibility but different values of the ratio L /� did not
reveal any significant variation of the values of the exponents

i,d. The exponents 
i,d, however, do depend systematically
on the compressibility C. The dependence is shown in Fig. 4.
The systematic measurement of the exponents 
i,d, shown in
Fig. 4, has been carried out in a flow with an inertial range of
L /�=256. The exponents 
i,d increase monotonically with C,
the value of 
d being always larger than 
i. The small values
of 
i,d are difficult to compute with accuracy. Still, our data
provide evidence that the values of 
i,d both go to zero as

i,d�C1/2 when C→0, at least over the range of values of C
we could investigate; see the inset of Fig. 4.

The statistical properties of the particle distribution have
been shown to be multifractal �19�. Our own numerical re-
sults are consistent with these findings.

The existence of a power-law dependence for �nr
2� in the

inertial range contrasts with what has been observed for the
case of preferential concentration of heavy particles in a tur-
bulent flow. In this case, no obvious scaling law has been
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FIG. 2. �Color online� The largest Lyapunov exponent as a func-
tion of the compressibility C of the flow.
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FIG. 3. �Color online� Deviation of the second moment of the
coarse-grained particle concentration from 1, the value at r=L, as a
function of r. Two different power laws, indicated by the two
dashed lines, are observed, one in the inertial range �r��� with an
exponent 
i, and one in the dissipative range r	�, with an expo-
nent 
d. The inset shows the logarithmic derivative; the scaling
regions are clearly shown by the plateaus. The parameters used in
this calculation are L /�=1024, and C=0.05.

INTERMITTENT PARTICLE DISTRIBUTION IN … PHYSICAL REVIEW E 77, 066304 �2008�

066304-3



observed �10�. In our problem, the existence of a power-law
dependence has been predicted by Fouxon �26�.

V. PROBABILITY DISTRIBUTION OF COARSE-GRAINED
CONCENTRATION

In this section, we discuss the probability distribution
function �PDF� of the coarse-grained particle distribution
over a scale r. One of the motivations comes from the recent
numerical suggestion that, in the problem of preferential con-
centration of heavy particles, the fluctuations of the coarse-
grained particle distribution have a distribution whose shape
depends only on the effective compressibility at scale r �10�.

The PDF of the coarse-grained particle concentration nr is
shown in Fig. 5 as a function of the compressibility at a scale
r=L /25, well within the inertial range �L /�=28 in the flow
considered�. Consistent with the notion that the fluctuations
around the mean value increase when the value of C in-
creases, Fig. 5 demonstrates that the distributions get broader
as the compressibility C increases. Interestingly, the probabil-

ity distribution functions of nr are qualitatively very similar
to the corresponding PDFs for the problem of preferential
concentration of heavy particles �10�. At low values of nr, the
PDF exhibits a power-law decay: P�nr��nr

��−1�. The expo-
nent � depends on both the ratio L /r and the compressibility
C. The value of � is shown in Fig. 6. The slow decay of the
PDF at small values of nr reflects the fact that there are large
regions without many particles, even at scales r within the
inertial range. In this respect, the decreasing value of � as C
increases reflects the fact, visible in Fig. 1, that the empty
regions of space are getting bigger and more probable as the
compressibility becomes larger.

As has been found in the problem of preferential concen-
tration of heavy particles, the PDFs of the coarse-grained
concentration can be superposed provided a simple relation
exists between the compressibility C and the scale r. Accord-
ingly, we found that, provided C�L /r�� is constant ���0.5�,
the PDFs superpose very well, especially at small concentra-
tions nr�1, as demonstrated by Fig. 7.

Our numerical results demonstrate that the shape of the
PDF of nr depends only on C /r� at small concentrations. As
a result, the exponent � that characterizes the power-law de-
cay of the PDF at low values of nr is expected to be a func-
tion of C /r�. In fact, Fig. 8 indicates that, over the range of
values covered by the present study, the exponent � has a
power-law dependence on C /r0.5: �� �C /r0.5�−�, with �
�0.9.

The observations shown in this section are very reminis-
cent of the results obtained in �10�. There, it was shown that
the probability distributions of the coarse-grained particle
density nr have a shape very similar to the one shown in Fig.
5. In addition, the PDFs were found to superpose, provided
the product St r−5/3, where St is the Stokes number, is con-
stant. The latter was then interpreted as resulting from simi-
lar properties of the compression rate related to the pressure
Hessian, coarse grained over a scale nr.

With this motivation, we have computed directly the
compressibility field � ·v, coarse grained over a scale r, at
several values of the scale r. The coarse graining has been
carried out by applying a Gaussian filter Gr�x ,x0�

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

α
d

,
α

i

C

αd
αi

1

0.1

0.5

FIG. 4. �Color online� Values of the exponents 
i and 
d as a
function of the compressibility C. The exponents increase mono-
tonically with C. It is found that the exponents tend to 0 as C→0,
with a power law 
i,d�C1/2; see the inset.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

10-3 10-2 10-1 100 101 102 103

P
(n

r)
n

r

nr

L/r=25

C=0.01
C=0.02
C=0.03
C=0.04
C=0.05
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� 1
2�r2 exp�−�x−x0�2 / �2r2�� to the compressibility field:

�� · v�r�x0� = d2x Gr�x,x0� � · v�x� . �7�

The resulting coarse-grained compressibility �� ·v�r was then
averaged over many Lagrangian trajectories. It was found
that, at long times, the averaged value tends to a limit
��� ·v�r�L, which is shown in Fig. 9 as a function of r for
several values of C. The value of ��� ·v�r�L is found to be
negative, and proportional to C. The negative value indicates
that particles accumulate in regions where the flow is locally
compressible �the Eulerian average of the compressibility of
the flow is zero�. In addition, Fig. 9 reveals that the com-
pressibility behaves essentially as

��� · v�r�L � − Cr−�, � � 0.5, �8�

when r is in the inertial range, for r /L�0.1.
This observation provides an explanation for the fact that

the shape of the PDFs of the coarse-grained particle density
nr depends on the reduced parameter C /r� only, at least when
nr is in the inertial range. Together with Eq. �8�, the reason-
able assumption that the properties of the distribution of par-
ticle, coarse grained over a size nr, depend on the coarse-
grained compressibility at scale nr, as suggested in Ref. �10�,
leads to the expectation that the distribution of nr depends on
C /r�, as seen in Fig. 7.

Although seemingly simple, the exponent ��0.5 does
not appear to have an obvious explanation. Indeed, the naive
analysis based on a dimensional argument would suggest in-
stead ��� ·v�r�L�r−2/3. However, the coarse-grained value of
the compressibility along Lagrangian trajectories depends on
many effects, which cannot be captured by a casual argu-
ment; hence the deviation of � with respect to the “naive”
exponent 2/3 �see Fig. 9�.

VI. DISCUSSION AND CONCLUSIONS

We have studied in this paper the statistical properties of
the distribution of particles advected by a two-dimensional
compressible flow, a problem recently investigated experi-
mentally �1� and numerically �2� in the context of a free-
surface turbulent flow. We have considered a synthetic flow,
which differs quantitatively in a number of ways from the
real surface flow in Ref. �1�. The synthetic flow has a well-
defined inertial range of scale, between a large, inertial scale
L and a small, dissipative �Kolmogorov� scale �, the ratio
L /� being a measure of the Reynolds number. For our own
purpose, the most significant parameter characterizing the
flow is the compressibility C defined by Eq. �1�. The inter-
mittency effects seen in real turbulent flows �15� are not
properly accounted for.
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FIG. 9. �Color online� Long-time limit of the compressibility
along Lagrangian trajectories, and coarse grained over a domain of
scale r. The values of the compressibility are rescaled by the pa-
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From a theoretical point of view, the statistical properties
of the particle distribution are well understood in the dissi-
pative range. For r��, the flow is smooth and the particle
distribution has been shown to have a multifractal measure
�19�. The understanding of the properties of the particle dis-
tribution in the inertial range of scales is still incomplete,
despite recent progress �10,23�.

One of our main results concerns the variations of the
second moment of the coarse-grained particle density over
scale r as a function of r. We found a power-law dependence
�nr

2�� �L /r�
i,d, where the exponent 
i �
d� characterize the
distribution in the inertial �dissipative� range of scales. For
the related problem of heavy particle dispersion by a turbu-
lent flow, the power-law dependence had been clearly estab-
lished in the dissipative range of scales. This is to be con-
trasted with the inertial range of scales, where no power law
had been seen numerically �10�. The exponents are found to
satisfy 
i�
d, and to vanish when C→0 as 
i,d�C1/2.

The observation that the shape of the PDFs of the coarse-
grained particle distribution depends only on the reduced pa-
rameter C /r0.5, for r in the inertial range ���r�L�, is the
other major result of this work. A qualitatively similar result
was obtained for the problem of heavy particles advected by
a turbulent flow �10�. The numerical results also demon-
strated that the coarse-grained compressibility over a scale r,
�� ·v�r, averaged over the many Lagrangian particles, is on

average equal to C�r /L�−�, with ��0.5. Thus the observed
similarity between the coarse-grained particle distributions
can be related to the property of the coarse-grained com-
pressibility, as suggested in Ref. �10�.

The properties of the distribution of particles advected by
the �model� compressible surface flow studied here are thus
very reminiscent of the properties obtained in the case of
heavy particles advected by a turbulent flow—the lack of a
simple power law for the second moment of �nr

2� in the latter
case being the most noticeable difference between the two
cases. These results may be pointing to a simple and univer-
sal mechanism explaining these phenomena, perhaps in the
spirit of Ref. �23�. It would be interesting to investigate other
quantities characterizing the clustering of particles, such as
entropy production �24,25� as a function of time, with our
model flows. Thus, despite its simplicity and the quantitative
differences with the realistic surface flow that motivated this
work, the simple problem studied here has revealed proper-
ties that seem to be in common with other important mixing
situations.
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